	3. 
	

	 
 
 
	
	
	

	 
	With the advent of Microsoft Internet Explorer 3.0 supporting nearly all features of Netscape Navigator, the long-lasting monopoly of the latter browser has ceased and lots of nasty problems for Web designers have begun.  Compatibility is a great thing to drink the health of, but a designer who really cares should always check whether what he's got is what he's promised. 

Actually this Tip might be as short as its title.  My point here is that the "official" comparative lists of supported features are of very limited use for a designer who aims at compatibility with both major browsers.  Or rather, these lists are useful, but only if you pay attention to those rows where an "X" is present in both columns, not in only one. 

Indeed, it's not much of a problem when a feature is supported by one of the browsers;  in this case, you only need to decide whether you should bother making use of it (in most cases, you should not).  It is when both browsers declare support for a feature that the problems appear.  After you've made a great design with one of the browsers in mind, here comes another browser claiming 10% or more of the market share, and when you finally make up your mind to check it out you discover that the page looks like an avalanche has ruined all your fine-tuned markup. 

Testimonies of this pseudo-compatibility are scattered throughout these pages; to get a feel of what I'm speaking about, you may try out the <BLOCKQUOTE> discrepancy, the MSIE bug of rendering <TT>, or the differences in calculating widths of columns in tables.  However, I believe that the topic of scripts compatibility between the browsers very well deserves a separate Tip of its own. 
	
	

	[image: image1.png]


j[ava]script news
	
	

	 
	 
Probably the worst part of all MSIE 3.0 phenomenon is its JavaScript support...  Oh sorry, no JavaScript, it's just that little humble "JScript," a so-called "open implementation of JavaScript."  (I'd be grateful, by the way, if someone could explain me what do they mean by "open implementation" of a proprietary standard.) 

This ain't no matter actually, because there's no such thing as a LANGUAGE="JScript" attribute for a <SCRIPT> tag.  Whenever MSIE runs across a JavaScript fragment, it readily feeds it to its brand-new JScript engine.  Results are often more dangerous than any HTML tag discrepancy, because a modal dialog box declaring that a "JScript compilation error" has occurred on the page can simply frighten the user---or at least make him/her blame the author for something worse than just bad design.  Remember that JavaScript is actually the only way for an HTML file to hurt the browser to the point of issuing a real ugly error message. 

Here lies the real problem.  As of now, Microsoft's own documentation for JScript is yet to be published (keep checking www.microsoft.com/jscript, however);  all you can get is the "Object Model for Scripting" specification describing object hierarchy common for both JScript and VBScript.  A single look into this document reveals that what is called JScript has good reason for getting so short a name.  I didn't make an exact count, but the impression is that no more than some 70% of Netscape's JavaScript is implemented by Microsoft.  Considering the JavaScript additions in Navigator 3.0, this number may be even lower. 

I don't mean to say that all you have to do is to check your JavaScript code against the new documentation.  Most probably, this won't suffice unless you do what the title of the Tip suggests.  Lots of unexpected changes, inexplicable oddities, and simply bugs in MSIE JScript are yet to be fully described by someone.  My goal here is just to point out that the problem exists and it is huge. 
	
	

	[image: image2.png]


the thrill of discovery
	
	

	 
	 
...The document.referrer property always points to the current document instead of the referring one.  The navigator.AppCodeName property which, according to Microsoft's own documentation, is supposed to return the "code name of the application", dispassionately returns "Mozilla" (!).  The hash part of the URL of the current document is always suppressed, so that window.location.hash cannot return but a null string (same about document.location.hash).  An attempt to use the window.opener object reveals that it is not supported, contrary to the documentation.  Et cetera. 

Probably the most incredible thing about the above examples is that I discovered them by picking topics from the Microsoft documentation at random and making quick tests.  Writing a script that would perfectly work in Navigator while refusing to work under Explorer is shockingly easy, even if you're making it strictly compliant to the JScript---not JavaScript---documentation.  Whatever biased I may be, you are welcome to experiment and decide for yourself. 
	
	

	[image: image3.png]


tell me where I am
	
	

	 
	 
Considering the above, a good use can be made of the code that will tell your script which browser it is running under.  In many special cases this problem can be solved without any scripting; for instance, if you nest an <EMBED> tag into the <OBJECT> ... </OBJECT> pair, only one of the tags will get control depending on the browser environment.  However, there's still a need to provide a solution for the general case.  The code below is pretty straightforward, but it works: 

<SCRIPT LANGUAGE="JavaScript"> <!--

if (navigator.appName == "Netscape") {

// Netscape Navigator (JavaScript) code

} else {

// Internet Explorer (JScript) code

} // -->

</SCRIPT>

This approach may be useful even in those cases where no scripts were initially anticipated.  If you've run across a critical difference in rendering some HTML code between the browsers, you can make two versions of the offending fragment, each customized for one of the browsers, and then put these fragments into two document.write calls in the corresponding branches of the above script (fortunately, the document.write method seems to work all right in both browsers). 

However, this method has a major disadvantage:  In any JavaSctipt-incapable browser, neither of the two versions will ever get control at all.  Thanks to Ian Rickard, I can now show how to expand the above code into a three-way switch providing separate branches for NN, MSIE, and all other JavaScript-incapable browsers.  Here's how it goes: 

<SCRIPT LANGUAGE="JavaScript"> <!--

if (navigator.appName == "Netscape") {

// Netscape Navigator (JavaScript) code

} else {

// Internet Explorer (JScript) code

}

//--> HTML for JavaScript-incapable browsers <!--

//--> more HTML for JavaScript-incapable browsers <!--

//--> ...etc... <!--

//-->

</SCRIPT>

You may use any number of lines to accommodate your HTML code for JavaScript-incapable browsers, provided that you put each line between //--> and <!-- character combinations. 

This is a wonderful example of a multilanguage program which is equally correct in more than one programming language---in our case, in JavaScript and HTML.  An HTML parser unaware of JavaScript will silently ignore both <SCRIPT> and </SCRIPT> tags as well as everything that is commented out using <!-- ... -->.  On the other hand, a JavaScript interpreter will skip everything that's in a line after a // couple of characters.  If you examine the above fragment you'll see that its comment structure allows every chunk of code to get control depending on which interpreting mechanism is currently in action: Netscape's JavaScript, Microsoft's JScript or a JavaScript-incapable plain HTML browser. 

The only remaining problem is that among all JavaScript-incapable browsers, there is one that behaves differently:  It is Netscape Navigator with its JavaScript support turned off by unchecking the "Enable JavaScript" checkbox on Network Preferences dialog.  In this state, Navigator ignores everything between the <SCRIPT> and </SCRIPT> tags without paying attention to whether it is protected by <!-- ... --> or not.  Rien n'est parfait. 

[image: image4.png]


  Some people have suggested using the new MSIE-only <IFRAME> tag with its HEIGHT and WIDTH equal to 100% and with its SRC attribute pointing to a file with the MSIE-enhanced version of the page, while the version for all other browsers would be enclosed in <NOFRAME> ... <NOFRAME> pair of tags.  However, this perfectly works only for short documents that can do without vertical scrolling.  If your page is more than a screen high and you thus have to enable scrolling by the SCROLLING attribute of the <IFRAME> tag, you will get an ugly enough picture of two adjacent vertical scrollbars, one belonging to the enclosed document, and the other (dummy), to the container document with the <IFRAME> tag.
  


	
	


